Articulating the Promises and Impossibilities – Vision of the MRC Basin Development Planning and its draft IWRM Strategy

Surichai Wun'kaeo Chaiyuth Sukhsri

Dept of Sociology & Anthropology
Dept. of Water Resources Engineering
Chulalongkorn University

October 2009

Topics/Issues to be addressed

- 1. Revisit those issues raised during the 1st BDP Regional Stakeholder Forum, March 2008
- 2. Dynamics: Drivers for changes in the LMB & Perspective on MRC BDP/IWRM Strategy
 - Some Interesting Facts & Figures from MRC

Critical Issues in Sustainable Mekong Basin Development

- Regionalization of development: "national interests" vs. "transboundary interests"
- Stronger private economic actors & market forces
- Weaker social actors/stakeholders
- MRC/BDP for whom? Legitimacy crisis?
- MRC/BDP for sustainability of the Mekong Basin? (capability/capacity/knowledge, awareness, willingness & commitment of NMCs)

(Source: Surichai Wun'Gaeo, "Challenges and Opportunities for the MRC and Civil Society Partnership", MRC Regional Consultation on BDP, 2008)

Critical Issues in Sustainable Mekong River Basin Development

- Market-driven globalization & new need for multi-level & multi-layered governance
- Necessity to have/create an atmosphere of partnership
- "Real-world" problems of development, e.g. trade-off betw. resources utilization & conservation
- Perception gaps & unfavorable climate of opinions
- Complexity of actors/stakeholders & actions
- No actors/stakeholders can do it alone

(Source: Surichai Wun'Gaeo, "Challenges and Opportunities for the MRC and Civil Society Partnership", MRC Regional Consultation on BDP, 2008)

3 keywords from yesterday presentations

- >Changes
- ➤ Variabilities
- > Uncertainties

Changes Affecting Water Resources

Demands

Consumptive Uses

Agriculture

Culture fisheries

Water supply

Environmental

In-stream Uses

Fish

Salinity control

Energy

Navigation

Climate

Sea level rise

Increased dry season demands

Higher drought risk

Increased flood flows & frequencies

Infrastructure

Dams

Irrigation & Drainage

Flood mitigation

Salinity control

Dredging & River works

Water supply & Sanitation

Management Practices

Catchment management

Energy production

Irrigation & Animal husbandry

Fishery management

Pollution control

What are the impacts from these changes on BDP?

Hydrological Regime of the LMB

- Primarily depends on climatic conditions of wet & dry seasons
- Wet/ High flow period: Sep Nov
- Dry/ Low flow period: Feb Apr
- ➤ Flood season in mainstream & tributaries: Jun/Jul Nov/Dec accounts for 85-90% of total annual water volume
- Peak month of September accounts for 20 -30% of annual flow

Average Annual Rainfall in the LMB

Average Long-term Flow Contributions:

Upper Mekong (18%) (17)

- China/Yunnan 16% (17)
- ➤ Myanmar 2% (<1)</p>

Lower Mekong (82%) (83)

- ► Lao 35% (41)
- ➤ Thailand 18% (15)
- ➤ Cambodia 18% (19)
- Viet Nam − 11% (8)

Source1: MRCS 1999

Source2: MRC. "Synopsis of the Mekong River System," September 2007

Did the U/S dams cause major flooding in the D/S areas during August 2008?

Source: MRC 2008 Annual Flood Report, 7th MRC Flood Forum, May 2009

The 2008 Flood Review of the Mekong: Flood Frequency Curve at Jinghong Station

Distribution of Floods & Low Flows in LMB (1960-2004) Nakhon Khong Stung Phanom Mukdahan Chiam Pakse Treng Kratie Khong Pakse Stung Kratie Mukd'an Year Prabang Chiam Saen Flood season conditions 90-day Minimum Discharge below normal (less than the 1:2 year event) Above average (greater than 1:2 year event) Seasonal flood hydrograph Annual Recurrence Interval <2 and >5 year Annual volume >2 and <5 year Recurrence Interval volume >5 and <10 year <5 and >10 year Annual Recumence Interval volume >10 and <20 year volume >20 year <10 and >20 year Annual Recurrence Interval <20 year Annual Recurrence Interval <50 year Annual Recurrence Interval

What does one learn from these two figures?

Source: Overview of Mekong Hydrology, November 2004

Flow Distribution/Transitions in the LMB

Dry season (carried over from 1987) ends in week 19. Mean seasonal discharge is 1340 cumecs, with a minimum of 900 cumecs in week 10. **Transition season 1** begins in week 19 and ends in week 27, during which time there are 4 significant freshettes.

Flood season begins in week 27 and closes in week 43. Peak discharge is 11 900 cumecs and volume is 118 km³. The hydrograph is therefore classified as low peak, high volume.

Transition season 2 begins in week 43, during which the mean rate of flow recession is 72 cumecs / day. The 1988 / 9 dry season starts in week 46.

Four Hydro-biological Seasons:

- 1) Transition I
- 2) Wet/Flood
- 3) Transition II
- 4) Dry/Drought

What do these transitions tell us?

Water Uses: Irrigated Area in LMB

Table: Irrigated Area in the Mekong River Basin

Source: IBFM No. 2, MRCS (June 2004)

Country	Season					
	Dry	Wet	Total	D/S	W/S	Total
	(ha)	(ha)	(ha)	(%)	(%)	(%)
Yunnan,PF	N/A	N/A	N/A	N/A	N/A	N/A
Myanmar	N/A	N/A	N/A	N/A	N/A	N/A
Laos	127,800	204,200	332,000	6	4	4
Thailand	156,300	1,266,000	1,422,300	7	24	19
Cambodia	253,100	1,114,700	1,367,800	12	21	18
Vietnam	1,558,700	2,753,000	4,311,700	74	52	58
TOTAL	2,095,900	5,337,900	7,433,800	100	100	100

What does one learn from these numbers?

Example of issues that are currently addressed by MRC

- Flow regime changes in the Mekong from developments? Or climate change?
- Downstream impacts from Upper Mekong development
 - Increased dry season flows
 - Decreased flood peaks
 - Delayed inundation of floodplains
 - Bed level changes/Increased bank erosion
 - loss of secondary channels
 - reduced floodplain/delta areas (particularly in Cambodia & Vietnam)
- What do these mean for wetland/fisheries/biodiversity/agricultural production?

Basin Development Plan: Planning Cycle/Development Scenarios

Table 1: Types of scenarios

Scenario	Purpose		
Baseline scenario	A reference for comparison with other scenarios		
0-year development scenario (most realistic case)	Illustrates the impacts of significant development projects (national and regional) in the next 20 years		
Alternative development scenarios (options)	To identify appropriate development alternatives by maximising regional benefit and minimising harmful effects on society and the environment		
Potential development scenarios (opportunities)	To determine development opportunities within basin limitations		
Climate Change scenario	To analyse the impact of climate change on basin development plans		

Are these sensible development scenarios? Are these enough?

- >Status
- >Impacts
- > Responses/Adaptation

Do we enough knowledge on these?

Can BDP/MRC help us?

Thank You for Your Attention

For more information please contact

chaiyuth.S@chula.ac.th

www.watercu.eng.chula.ac.th