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Harmful algal blooms: a global overview

G. M. Hallegraeff

The microscopic planktonic algae of the world’s oceans are critical food for filter-
feeding bivalve shellfish (oysters, mussels, scallops, clams) as well as the larvae of
commercially important crustaceans and finfish. In most cases, the proliferation of
plankton algae (so-called ‘algal blooms’; up to millions of cells per litre) therefore is
beneficial for aquaculture and wild fisheries operations. However, in some situations
algal blooms can have a negative effect, causing severe economic losses to aquacul-
ture, fisheries and tourism operations and having major environmental and human
health impacts. Among the 5,000 species of extant marine phytoplankton (Sournia et
al., 1991), some 300 species can at times occur in stuch high numbers that they obvi-
ously discolour the surface of the sea (so-called ‘red tides’), while only 80 or so spe-
cies have the capacity to produce potent toxins that can find their way through fish
and shellfish to humans (Table 1.1).

It is believed that the first written reference (1000 B.C.) to a harmful algal bloom
appeats in the Bible: . .. all the waters that were in the river were turned to blood.
* And the fish that was in the river died; and the river stank, and the Egyptians could
not drink of the water of the river’ (Exodus 7: 20-1). In this case, a non-toxic bloom-
forming alga became so densely concentrated that it generated anoxic conditions
resulting in indiscriminate kills of both fish and invertebrates. Oxygen depletion can
be due to high respiration by the algae (at night or in dim light during the day) but
more commonly is caused by bacterial respiration during decay of the bloom. Essen-
tially non-toxic bloom formers sometimes can evoke major ecosystem impacts, how-
ever, and unsightly dead fish, slime and foam deter tourism and recreational
activities.

One of the first recorded fatal cases of human poisoning after eating shellfish
contaminated with dinoflagellate toxins was in 1793 when Captain George Vancou-
ver and his crew landed in British Columbia in an area now known as Poison Cove.
He noted that for local Indian tribes it was taboo to eat shellfish when the seawater
became bioluminescent due to dinoflagellate blooms (Dale and Yentsch, 1978). The
causative alkaloid toxins, now called paralytic shellfish poisons (PSP) (see Chap-
ter 7), are so potent that a pinhead-size quantity (about 500 pg), which can easily
accumulate in just one 100 g serving of shellfish, could be fatal to humans. On a glo-
bal scale, close to 2,000 cases of human poisoning (15% mortality) through fish or
shellfish consumption are reported each year and, if not controlled, the economic
damage through reduced local consumption and reduced export of seafood products
can be considerable. Whales and porpoises can also become victims when they
receive toxins through the food chain via contaminated zooplankton or fish (Geraci
et al., 1989). Poisoning of manatees by dinoflagellate brevetoxins contained in salps
attached to seagrass (in Florida: Anderson and White, 1989) and of pelicans and
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n Japan, a bloom of the raphidophyte flagellate Chattonella antigua thus killed

US$500 million worth of caged yellowtail fish in the Seto Inland Sea (Okaichi, 1989).

Table 1.1 summarizes the above three types of harmful algal bloom problems,

together with representative examples of causative algal species, ranging from
dinoflagellates, diatoms, prymnesiophytes and raphidophytes to cyanobacteria. Clin-
ical symptoms of various types of fish and shellfish poisoning are listed in Table 1.2
and the diversity of chemical structures of algal toxins is discussed in Chapters 7-11.
Unfortunately, there is no clear-cut correlation between algal concentrations and
their potential harmful effects. Dinoflagellate species such as Dinophysis, Alexan-
drium and Pyrodinium can contaminate shellfish with toxins, even at very low cell
concentrations. The prymnesiophyte Chrysochromulina polylepis produces only
moderate biomass levels but has a very high toxic potency. Finally, the prymnesio-
phyte Phaeocystis is basically non-toxic but its nuisance value is caused by very high
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biomass levels.

1.1 GLOBAL INCREASE OF ALGAL BLOOMS

While harmful algal blooms, in a strict sense, are completely natural phenomena that
have occurred throughout recorded history, in the past two decades the public health
and economic impacts of such events appear to have increased in frequency, inten-
sity and geographical distribution. One example, the increased global distribution of
paralytic shellfish poisoning, is illustrated in Fig. 1.1. Until 1970, toxic dinoflagel-
late blooms of Alexandrium (Gonyaulax) tamarense and Alexandrium (Gonyaulax)
catenella were only known from temperate waters of Europe, North America and
Japan (Dale and Yentsch, 1978). By 1990, this phenomenon was well documented
throughout the Southern Hemisphere, in South Africa, Australia, New Zealand,
India, Thailand, Brunei, Sabah, the Philippines and Papua New Guinea. Other spe-
cies of the dinoflagellate genus Alexandrium, such as A. cohorticula and A. minutum,
as well as the unrelated dinoflagellates Gymnodinium catenatum and Pyrodinium
bahamense var. compressum have now also been implicated. Unfortunately, there are
very few long-term records of algal blooms at any single locality. Probably the best
dataset tefers to the concentration of PSP toxins (ug saxitoxin equivalent/100 g
shellfish meat) in Bay of Fundy clams, which has been monitored by mouse bioassay
since 1944 (White, 1987). Shellfish containing more than 80 ug PSP/ 100 g shellfish
meat are considered unfit for human consumption. Fig. 1.2 shows evidence of a
cyclic pattern of toxicity at this site with increased frequency of toxic blooms in the
Tate 1940s, early 1960s, late 1970s and early 1980s, and possibly beginning again in
the mid-1990s (not shown). The importance of such long-term datasets is discussed
in Chapter 21.

The issue of a global increase in harmful algal blooms has been a recurrent
topic of discussion at all major conferences dealing with harmful algal blooms
(Anderson, 1989; Hallegraeft, 1993; Smayda, 1990). Four explanations for this
apparent increase in algal blooms have been proposed: increased scientific aware-
ness of toxic species; increased utilization of coastal waters for aquaculture; stim-
ulation of plankton blooms by cultural eutrophication and/or unusual climatological
conditions; and transportation of dinoflagellate resting cysts either in ships’ ballast
water or associated with translocation of shellfish stocks from one area to another.
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Figure 1.1
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Figure 1.2

Concentration of PSP toxins in Bay of Fundy clams (ug saxitoxin
equivalent/100 g tissue) in 1944-1983.

Source: White (1987).
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Figure 1.3

Growth of literature on harmful algal blooms, illustrated by analysing
some 6,000 HAB publications from Aquatic Sciences and Fisheries
Abstracts (ASFA) from about 1978 to 1998, with pre-1970 literature
based on University of Copenhagen records.

Source: data courtesy of Gert Hansen.
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on the occurrence of dinoflagellates of the genus Alexandrium are a good example.
Until 1988, the type species A. minutum was only known from Egypt (Halim, 1960);
it has now been reported from Australia, Ireland, France, Spain, Portugal, Italy, Tur-
key, the east coast of North America, Thailand, New Zealand, Taiwan and Japan

(Hallegraeff et al , 1991; Yuki, 1994), Other examples are the recent description of

the newly recognized phenomena of diarrhetic shellfish poisoning (since 1976),
amnesic shellfish poisoning (since 1987) and azaspiracid poisoning (AZP, since
2000, so far only documented from Ireland, England and Norway).

1.2.1 Diarrhetic shellfish poisoning (DSP)

This phenomenon was first documented in 1976 from Japan where it caused major
problems for the scallop fishery (Yasumoto e al, 1978). The first dinoflageliate to
be implicated was Dinophysis fortii (in Japan), soon followed by D. acuminata (in
Europe), D. acuta, D. norvegica (in Scandinavia), D. mitra, D. rotundata and the
benthic dinoflagellate Prorocentrum lima. Between 1976 and 1982, some 1,300 DSP
cases were reported in Japan, in 1981 mote than 5,000 cases were reported in Spain

consumers. Shellfish containing more than 2 g okadaic acid and/or 1.8 ug dinophy-
sis toxin-1 per gram of hepatopancreas are considered unfit for human consumption
(Lee er al., 1987). Increasing problems caused by pectenotoxins have also been
noted. The known global distribution of DSP (Fig. 1.4) includes Japan, Europe,
Chile, Thailand, Canada (Nova Scotia), Australia and New Zealand.

1.2.2  Amnesic shellfish poisoning (ASP)

This phenomenon was first recognized in 1987 in Prince Edward Island, Canada,
where it caused three deaths and 105 cases of acute human poisoning following the
consumption of blue mussels, The symptoms (Table 1.2) include abdominal cramps,
vomiting, disorientation and memory loss (amnesia). Most unexpectedly, the caus-
ative toxin (the excitatory amino acid domoic acid; see Chapter 9) is produced by a

species Pseudo-nitzschia australis (= N. pseudoseriata), P delicatissima, P. multi-
series, P. multistriata, P pseudodelicatissima, P. seriata and occasionally P, fraudu-
lenta, P pungens and P. turgidula have been implicated (Bates et al., 1989; Garrison
etal., 1993; Martin er al., 1990; Rhodes et al., 1998). To date, reports of domoic acid
in seafood products have been mainly confined to North America (Bay of Fundy,
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spines (setae) are studded with smaller barbs along their length. The setae can break
off and penetrate the gill membranes of fish, with the smaller barbs preventing them
from coming out. Fish death may be caused by capillary haemorrhage, dysfunction
of gas exchange at the gills, suffocation from an overproduction of mucus, or even
from secondary infection of the damaged tissue (Bell, 1961; Rensel, 1993; Yang and
Albright, 1992).

A more widespread problem for fish farmers is the production by various algal
groups Of fatty acids or galactolipids which damage the epithelial tissues of the gills.
In experimental assay systems these substances destroy red blood cells and therefore
have been provisionally termed ‘hemolysins’ (Yasumoto et al., 1990). Algal species
as diverse as the raphidophytes Hererosigma akashiwo and Chattonella antiqua/
marina (see Chapter 18), the prymnesiophytes Chrysochromulina polylepis and
Prymnesium parvuim (see Chapter 16), and the dinoflagellate Karenia mikimotoi
(= Gymnodinium nagasakiense; see Chapter 15) have been implicated. Heterosigma
has killed caged fish in Japan, Canada, Chile and New Zealand, whereas Chattonella
is a fish killer known from Japan (Seto Inland Sea), South East Asia, Australia and
Europe. With these two raphidophyte flagellates, physical clogging of gills by mucus
excretion or gill damage by hemolytic substances or the production of oxygen radi-
cals, free fatty acids and breve-like neurotoxins may be involved. In January 1989, a
Heterosigma bloom in Big Glory Bay, Stuart Island (New Zealand), killed cage-
reared chinook salmon worth NZ$12 million (Chang et al., 1990), and Chattonella
marina killed Aus$45 million of cultured blue-fin tuna in South Australia in 1996
(Hallegraeff et al., 1998). The two prymnesiophyte flagellates Chrysochromulina
and Prymnesium produce substances that affect gill permeability, which leads to a
disturbed ion balance. Toxicity by these species is promoted by phosphorus defi-
ciency. A massive bloom (60,000 km?; 107 cells I'') of Chrysochromulina polylepis
occurred in May—June 1988 in the Skagerrak, the Kattegat, the Belt and the Sound
between Denmark, Norway and Sweden (Rosenberg ez al., 1988). The deaths of
900 tons of fish, including cod, salmon and trout, occurred due to damage of gill
membranes that produced a lethal increase in the chloride concentration in the blood;
fish cages moved into less saline fjords were therefore less affected. Prymnesium
parvum has caused mortality of Tilapia fish in brackish water culture ponds in Israel
(Shilo, 1981), as well as mortality of salmon and rainbow trout in net-pens in Nor-
way. However, probably the greatest problem for Norwegian fish farms are blooms
of the unarmoured dinoflagellate Karenia mikimotoi (as Gyrodinium aureolum) (first
reported in 1966; Tangen, 1977). Similar dinoflagellates are common in Ireland and
Scotland, as well as Japan and Korea. Characteristic histopathological symptoms in
fish are a severe necrosis and sloughing of epithelial tissues of the gills and digestive
system (Roberts ef al., 1983). A bloom of related gymnodinioid dinoflagellate spe-
cies in Hong Kong waters in April 1998 caused over US$20 million damage to fin-
fish aquaculture.

Sophisticated monitoring systems using buoys with fibre-optical sensors and
data transfer by satellite (the MARINET system) are in place on the Norwegian
coast to allow cages to be towed away from bloom-affected areas. During the 1988
Chrysochromulina bloom, more than 26,000 tons of fish in 1,800 cages were thus
moved from their permanent site into inland fjords. Fish losses in cages can also be
reduced by not feeding the fish, as feeding attracts them to the surface and increases
oxygen demand. In some cases, pumping of water to dilute the algal concentration,
the administration to fish of mucolytic agents or immediate harvesting of marketable
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fish before they can be killed by algal blooms may also be an option. The hemolytic
toxins do not accumulate in fish flesh. Virtually all algal blooms, even of non-toxic
species, reduce the fishes’ appetite and reduced OXygen concentrations stress the fish
and make them more vulnerable to disease (see Chapter 25).

Finally, ichthyotoxic ‘ambush predator’ dinoflagellates Pfiesteria piscicida and
P shumwayae were first recognized in North Carolina in 1991 and later in Chesa-
peake Bay (Burkholder ez al 1992). Their ephemeral presence (cysts germinate in

1.4 INCREASE OF ALGAL BLOOMS BY CULTURAL
EUTROPHICATION

While some organisms such as the dinoflagellates Karenia (Gymnodinium) brevis,
Alexandrium, Dinophysis and Pyrodinium appear to be unaffected by coastal nutri-
ent enrichments, many other algal bloom species appear to be stimulated by ‘cultural

contributed by untreated domestic and industrial waste. Red-tide events in Hong
Kong harbour were less frequent in 1989-1997 until the major bloom year of 1998,
A similar experience was noted in the Seto Inland Sea, one of the major fish-farm
areas in Japan (Okaichi, 1989) (Fig. 1.7). Between 1965 and 1976, the number of
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Figure 1.6

Correlation between the number of red-tide outbreaks per year in Tolo
Harbour (continuous line) and the increase in the human population in
Hong Kong (bar diagram), 1976-1986.

Source: Lam and Ho (1989).
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Figure 1.8

Long-term trend in the
the River Rhine (above
nutrient ratios (below).

Source: Smayda (1 i
(1981), yda (1990), using data by Van Bennekom and Salomons

phosphate, nitrate and ammonia loading of
) and concurrent changes in the N:P and Si:P

Irialliiiul algal DIVULLD. a4 givual vl view

ot unusual in terms of biomass but rather in terms of its species composition and
toxicity, has been related to a change in the nutrient-status from nitrogen- to
hosphorus-limitation (Maestrini and Granéli, 1991). As in Hong Kong and Japan,
several North European countries have now agreed to reduce phosphate and nitrate
discharges by 50% in the next several years, but their efforts will almost certainly be
in vain if neighbours continue polluting. Furthermore, such indiscriminate reduc-
tions in nutrient discharges are not addressing the problem of changing nutrient
ratios of coastal waters, Changed patterns of land use, such as deforestation, can also
cause shifts in phytoplankton species composition by increasing the concentrations
of humic substances in land runoff. Acid precipitation can further increase the mobil-
ity of humic substances and trace metals in soils. Experimental evidence from Swe-
den indicates that river water draining from agricultural soils (rich in N and P)
stimulates diatom blooms but that river water draining from forest areas (rich in
humic and fulvic acids) can stimulate dinoflagellate blooms of species such as Pro-
rocentrum minimum (Granéli and Moreira, 1990). Agricultural runoff of phosphorus
can also stimulate cyanobacterial blooms, for example of Nodularia spumigena in
the Baltic Sea and in the Peel-Harvey Estuary, Australia (Fig. 1.9). These species
produce hepatotoxic peptides (Nodularia, Microcystis) and neurotoxic alkaloids
(Anabaena, Aphanizomenon) which can kill domestic and wild animals drinking
from the shores of eutrophic ponds, lakes and reservoirs (for example, during a
1,000 km long Anabaena circinalis bloom in the Darling River, Australia, in 1991).
Toxicity problems from freshwater cyanobacteria have been documented from Aus-
tralia, Bangladesh, China, Europe (12 countries), India, Israel, Japan, Latin America,
North America, South Africa, Thailand and the former Soviet Union (Carmichael,
1989). The toxins can accumulate in the digestive system of shellfish (Falconer ez al.,
1992) but contamination of drinking water with teratogens and tumour promoters is
a more common public health risk. Human fatalities have resulted when microcystin-
contaminated lake water was offered to patients in a haemodialysis clinic (Pouria ez
al., 1998). A neurotoxic factor has also been associated with some strains of the
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Relationship between Nodularia spumigena cyanobacterial blooms (as
chlorophyll concentration) in the Peel-Harvey Estuary, Australia, and its
relationship to riverine phosphate loading from agricultural runoff.

Source: Hillman et al. (1990).
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which accumulate through the food chain, from small fish grazing on the coral reefs
into the organs of bigger fish that feed on them (the principal toxin fraction in fish _is
ciguatoxin). While in a strict sense this is a completely natural phenomenon (Captain
Cook suffered from this illness when visiting New Caledonia in 1774), from being a
rare disease two centuries ago ciguatera now has reached epidemic proportions in
French Polynesia. In the period 19601984 more than 24,000 patients were reported
from this area, which is more than six times the average for the Pacific as a whole.
Evidence is accumulating that reef disturbance by hurricanes, military and tourist
developments, as well as coral bleaching (linked to global warming), are increasing
the risk of ciguatera by increasing benthic substrate for dinoflagellate growth (Bag-

nis ef al., 1985).

1.5 STIMULATION OF ALGAL BLOOMS BY UNUSUAL
CLIMATOLOGICAL CONDITIONS

1.5.1 Toxic Pyrodinium bahamense blooms in the tropical
Indo-West Pacific

At present the dinoflagellate Pyrodinium bahamense is confined to tropical, man-
grove-fringed coastal waters of the Atlantic and Indo-West Pacific. A survey of fossil
occurrences of its resting cyst Polysphaeridinium zoharyi (Fig. 1.11) (records go
back to the Eocene, 50 million years ago) indicates a much wider range of distribu-
tion in the past. For example, in the Australasian region at present the dinoflagellate
does not extend further south than Papua New Guinea, but in the Pleistocene it
ranged as far south as Sydney Harbour (McMinn, 1989). There is genuine concern
that, with an increased greenhouse effect and warming of the oceans, this species
may return to Australian waters. In the tropical Atlantic, in areas such as Bahia Fos-
forescente in Puerto Rico and Oyster Bay in Jamaica, this species forms persistent
luminescent blooms which are a major tourist attraction. Both plankton bloom mate-
rial and oysters and mussels attached to mangrove roots in Bahia Fosforescente
appeared at one time to be non-toxic (Hallegraeff; Oshima, unpublished data). The
first harmful implications of Pyrodinium blooms became evident in 1972 in Papua
New Guinea. Red-brown water discolorations coincided with the fatal food poison-
ing of three children and mouse bioassays on shellfish from a house in the affected
village subsequently established Pyrodinium bahamense as a source of paralytic
shellfish poisons (MacLean, 1977). Since then, toxic Pyrodinium blooms have
apparently spread to Brunei and Sabah (1976), the central Philippines (1983), the
northern Philippines (1987) and Indonesia (North Mollucas). MacLean (1989) pre-
sented strong circumstantial evidence for a coincidence between Pyrodinium blooms
and El Nifio-Southern Oscillation (ENSO) climatological events. El Nifio is caused
by an imbalance in atmospheric pressure and sea temperature between the eastern
and western parts of the Pacific Ocean and results in a shoaling of the thermocline.
The 1991-1994 ENSO event and recurrence of dinoflagellate blooms in the Philip-
pines tend to substantiate these claims (Fig. 1.12).

Pyrodinium is a serious public health and economic problem for the tropical
countries that are affected, as they depend heavily on seafoods for protein and have
little prior experience in toxic dinoflagellate research. In the Philippines alone, this
organism has now been responsible for more than 2,000 human illnesses and
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1.5.2 Neurotoxic shellfish poisoning in Florida (USA) and New Zealand

Until recently, neurotoxic shellfish poisoning (NSP: Table 1.2), caused by polyether
brevetoxins produced by the unarmoured dinoflagellate Karenia brevis, was consid-
ered to be endemic to the Gulf of Mexico and the east coast of Florida, where ‘red
tides’ had been reported as early as 1844. An unusual feature of this organism is the
formation by wave action of toxic aerosols that can lead to respiratory asthma-like
symptoms in humans. In 1987 a major Florida bloom event was dispersed by the
Gulf Stream northward into North Carolina waters, where it has since continued to
be present (Tester et al., 1991). Unexpectedly, in early 1993 more than 180 human
shellfish poisonings were reported from New Zealand, caused by a number of spe-
cies similar to Karenia brevis, now newly desctibed as K. bicuneiformis, K. brevisul-
cata, K. papilionacea, K. selliformis (Jasperse, 1993; Haywood and Steidinger, in
prep.). Most likely, this was a member of the hidden plankton flora (previously
present in low concentrations), which developed into bloom proportions triggered by
unusual climatological conditions (higher than usual rainfall, lower than usual tem-
perature) coinciding with an El Nifio event.

1.5.3 Fossil blooms of Gymnodinium cateratum in the Kattegat-Skagerrak

The present-day distribution of the paralytic shellfish poison-producing dinoflagel-
late Gymnodinium catenatum includes the Gulf of California, Gulf of Mexico, Ven-
ezuela, Argentina, Japan, Korea, China, the Philippines, Palau, Tasmania (Australia),



New Zealand, the Mediterranean and the Atlantic coast of Spain, Portugal and
Morocco (Hallegraeff and Fraga, 1997). The microreticulate cysts of a closely
related (apparently nontoxic) species Gymnodinium nolleri were present in unusy.-
ally large amounts in pollen records from Kattegat sediments (Nordberg and Berg-
sten, 1988). A multi-disciplinary study (Dale and Nordberg, 1993) to reconstruct the
prevailing paleoenvironment hag suggested the following scenario: the migration of
this organism into the area about 5000 B.p.; its establishment as part of the local
plankton; a major blooming phase about 2000-500 B.P. of 2 magnitude that has not
been seen since; and its disappearance during the ‘Little Ice Age’,

pean strains of A. minutyum (Scholin e al., 1993; de Salas et al., 2000). The toxic
dinoflagellate Pfiesteriq has been confirmed from ballast water entering North
America from Europe (P. Rublee, unpublished),

The evidence of ballast-water transfer of marine organisms other than micro-
scopic algae is considerable and includes species of seaweeds, fish, crustaceans,
polychaete worms, starfish and molluscs (Carlton, 1985). As of 1 November 1991,
the International Maritime Organization (IMO) has ratified the introduction of vol-
untary guidelines for ballast-water handling procedures by bulk-cargo vessels. These
measures aim to reduce the risk of harmful introductions by encouraging a range of

avoid ballasting during toxic dinoflagellate blooms in ports. Other options using
heat, electrical shock or chemical treatment (chlorine, hydrogen peroxide) of ballast
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